P	E	D	E	S	T	R	$\mid A$	N
B	R	I	D	G	E			

Gabriete Lioskyte
Zeynepnaz Kocabas
Gabriella Luppi Mackenzie
Julia-Landreau

L O
 C A T I

Huoi Ha, Dien Bien province - Vietnam

area is located in the north west part of Vietnam. This was chosen due to lack of circulation in between small villages and cities with well developed infrastructures.

Vietnamese earthquake map ttp://www.e.ese.org/Archives/Ful-

Dien Bien Phu's area

wind speed
max and average in knots
relative humidity
\% by month
precipitation - rain
\% by month

M A T E R I A L S

$F L O O R I N G$

$R \bigcirc O F \| N G S U P P O R T$

$\begin{array}{ll}\text { Coleur } & \text { Chocolate } \\ \text { Grooved } & \text { No } \\ \text { Dimensions (") } & 3 / 4 \times 12 \times 73 \\ \text { Sire } & 1 \times 12 \times 6 \\ \text { Length (mm) } & 1860 \\ \text { Thickness } & 18 \mathrm{~mm}) \\ \text { Width } & 20 \\ \text { Wurtace } & 305 \\ & \text { Smooth }\end{array}$

- Stock: 371
- Model: BSN-7/8-400-1
- Weight: 5.90 kg
- Packaging: $400 \mathrm{~cm} \times 8 \mathrm{~cm} \times 8 \mathrm{~cm}$

hamboo

Stock: 564

- Model: BSN-3/4-500-C
- Weight: 1.20 kg
- Packaging: $500 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$

bamboo

The lorgest lasting fatic membrane of its type in the word

- Blackoun (opaque) design minimizes solar gain and controls intemal climate
- Material weighs approximately 24 to 30 oz per $5 q$ yd.
- Helps guard agarst UV and airborne contaminants
- Dramatically extends the membrane life

High strength rip-stop substrate design
Exeptional fre-retardam capabitity
Available in large selection ot colors

- Industry leading 20 - year warronty

name	material	number	length [m]	weigth 1 unit[kg]	Total weight [N]
flooring	bamboo	22	3		9120.2
railings sup- porting the roof vertical	bamboo	12	3	4.4	517
railings sup- porting the roof horizontal	bamboo	6	3	4.4	258.9
railings	bamboo	10	3	0.72	70
roof	fabric	1	43.43 m 2	$0.81-1 \mathrm{~kg} / \mathrm{m} 2$	459.9

$3 \mathrm{D} M \mathrm{O} \mathrm{D}$ E L

舟时斯

STRUCTURE SELF LOAD

	Material	number of beams	length［m］	weight［N］
Structure HEB 300	Steel	6	3	3400
Structure main beam HEB 600	Steel	2	15	31200
Bracing HEB 100	Steel	5	3	600.1

LIVE LOADS（FROM EUROCODE）

section $A A^{\prime}$

Live load	$4000 \mathrm{~N} / \mathrm{m} 2$	45 m 2	180 kn
Snow load	$1.6 \mathrm{~N} / \mathrm{m} 2$	45 m 2	72 kN

C A L C U L A T I O N S

$P R \mid M A R Y B E A M$
27.9 kN Is the reaction
13.95 kN is the reaction for ending points

$\Sigma \mathrm{Fy}=0$
$V A+V B-4(27.9)-31.2-4(0.3)=0$
$\Sigma \mathrm{MA}=0$
$\mathrm{VB}^{\star} 15-(27.9+0.3)(3)-(27.9+0.3)(6)-27.9+0.3(9)-(27.9+0.3)(12)-31.2(7.5)=72 \mathrm{kN}$ $\mathrm{VB}=71.4 \mathrm{kN}$
$\mathrm{VA}=\mathrm{VB}=72 \mathrm{kN}$
Main beam max bending- 26.2 mm
Critical deformation for main beam $-15 \mathrm{~m} / 400=0.0375 \mathrm{~m}=37.5 \mathrm{~mm}$
Both are less than the critical load
$S T R E N G T H D E S I G N$
self weight of the bracing $600.1 / 2=300.05=0.3 \mathrm{kN} \quad$ for each ending of the bracing

$\downarrow^{108.3 N}$
$\downarrow^{108.3 \mathrm{~N}}$

$\Sigma \mathrm{Fy}=0$
$V A+V B-0.1083(2)-(55.6)=0$
$V A+V B=55.8$
$\Sigma \mathrm{MA}=0$
$V B * 2.5-2.75(0.1083)+0.25(0.1083)-$
$1.375(50.9)$
$+0.125(4.63)$
$\mathrm{VB}=27.9$
$\mathrm{VA}=\mathrm{VB}=27.9 \mathrm{kN}$

Secondary beam max bending- 0.04 mm Critical deformation for secondary beam $3 \mathrm{~m} / 400=0.0075 \mathrm{~m}=7.5 \mathrm{~mm}$

Punctual load (from the roof) Whole roof weight $=517+258.9+70+459.9=1305.8 \mathrm{~N}=1.3 \mathrm{kN}$ $1.3 \mathrm{kN} / 6=216.7 \mathrm{~N}$ (load of the roof distributed on one sec$216.7 \mathrm{~N} / 2=108.3 \mathrm{~N}$ (punctual load from the roof on one of the ends of secondary beam

Uniform loads = snow load+ live load+ flooring $72000+180000+9120.2=261120.2 \mathrm{~N}=261.1 \mathrm{kN}$ $261.1 \mathrm{kN} / 5=52.2 \mathrm{kN} / \mathrm{m}$ (weight distributed on one secondary $\begin{gathered}\text { beam }\end{gathered}$

$$
52.2 \mathrm{kN}+3.4 \mathrm{kN}=55.6 \mathrm{kN}
$$

$\mathrm{q}=55.6 \mathrm{kN} \mathrm{q} / 12=4.63 \mathrm{kN}$ for each segment of 0.25 m
$1=4.63 \mathrm{kN} \quad 2=46.3 \mathrm{kN} \quad 3=4.63 \mathrm{kN}$

SECONDARYBEAMS
$72000+180000+9120.2=261120.2 \mathrm{~N}=261.1 \mathrm{kN}$

MAIN BEAM - HEB 600

$M_{x}=3.95 \times 10^{5} \mathrm{~N} \times \mathrm{m}$ (maximum moment from Nolian) $I_{x}^{x}=171000 \mathrm{~cm}^{4}=1.71 \times 10^{-3} \mathrm{~m}^{4}$
$y_{\text {max }}=H / 2=600 \mathrm{~mm}=600 / 2=300 \mathrm{~mm}=3 \times 10$
$\sigma_{z}=M_{x} y / I_{x}=(3.95 \times 3) /(1.71) \times 10^{5.1+3}=6.93 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}=69.3 \times 10^{6} \mathrm{~N} /$ $\mathrm{m}^{2}=$
$=69.3 \times 10^{6} \mathrm{~Pa}=69.3 \mathrm{MPa}$
exposed steel s 235 MPa
$0.8 f_{y k} \times 235=188 \mathrm{MPa}$
$69.3 \mathrm{MPa}<188 \mathrm{MPa}$

SECONDARY BEAM - HEB 300
$M_{\times}=0.0345 \times 10^{5} \mathrm{~N} \times \mathrm{m}$ (maximum moment from Nolian) $I_{x}=25170 \mathrm{~cm}^{4}=0.25 \times 10^{-3} \mathrm{~m}^{4}$
$y_{\text {max }}=H / 2=300 / 2=150 \mathrm{~mm}=1.5 \times 10^{-1}$
$\sigma_{=}=M_{x} / /{ }_{x}=(0.0345 \times 1.5) /(0.25) \times 10^{5-1+3}=0.207 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}=2.1 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=$ $=2.1 \times 10^{6} \mathrm{~Pa}=2.1 \mathrm{MPa}$
exposed steel s 235 MPa
$0.8 f_{\mathrm{yk}} \times 235=188 \mathrm{MPa}$
$2.1 \mathrm{MPa}<188 \mathrm{MPa}$

