Pedestrian bridge

EUNDAMENTALS OF STRUCTURAL ANALYSIS VN N \times Prof. Fabrizio Bároi (2hiv) $\times \times$ Group 13

(u) wh izx 8 Students: Hijazi Soha, Houhou Mohamad

Location and general information

- Located in the city of Turin
- crossing through the Dora Riparia River
- in borough Campidoglio
- spans 18 m long and 3.9 m wide
- Composed of four primary steel beams IPE400 and seven secondary steel beams IPE220
- The handrail 1 m high above the decking level is made of steel with $\mathrm{E}=2.1 \times e^{17}$ MPa
- In each intersection between primary and secondary beams we used 16 mm steel circular bracing to resist horizontal forces
- The finishing above the steel beams is a wood decking $390 \times 20 \times 7 \mathrm{~cm}$ each tile with $E=10300 \mathrm{Mpa}$
- The primary and secondary beams have their axis on the same plane level

Calculations of loads

> Live loads : People load 4.5kN/m2 Eurocode Italy
> Dead loads: Wood deck + Snow load + Self load + Railing load
$>$ Total load = 1.6 LL + 1.2 DL

Secondary beams disributed loads
Secondary beams at side end disributed loads
> We did this procedure for the secondary beam to calculate the total distributed load which was equal to $31.4 \mathrm{kN} / \mathrm{m}$, and for the primary beam we calculated only the self load, which is equal to 2.85 kN / m, because we already considered all the other loads for the secondary beams.

3D renders

Structural details

Detail 1

Section A-A

3D connection of beams

Calculations

The deflection of the primary beam was extracted from Nolian:
$\mathrm{Vz}=0.00033477 \mathrm{~m}$

- Strength Design

We calculated the stress in the main beam
$\sigma_{\mathrm{z}}=0.882 \mathrm{~N} / \mathrm{mm}^{2}=0.882 \mathrm{Mpa}<188 \mathrm{Mpa}$ (checked)

- Slenderness For primary beam IPE 400
$\lambda=\frac{\mathrm{L}_{0}}{\delta}=105.8<200 \quad$ (Satisfied)
For Secondary beam IPE 220
$\lambda=\frac{\mathrm{L}_{0}}{\delta}=41.99 \approx 42<200$
(Satisfied)

Results From Nolian

Shear Force diagram

Primary Beam

Shear Force diagram

Bending moment diagram

Deformation diagram

Bending moment diagram

Deformation diagram

Shear Force diagram
\square

Bending moment diagram

Deformation diagram

Thank You

